Performance of a Genetic Algorithm for Solving the Multi-Objective, Multimodal Transportation Network Design Problem
نویسنده
چکیده
The optimization of infrastructure planning in a multimodal network is defined as a multiobjective network design problem, with accessibility, use of urban space by parking, operating deficit and climate impact as objectives. Decision variables are the location of park and ride facilities, train stations and the frequency of public transport lines. For a case study the Pareto set is estimated by the Non-dominated Sorting Genetic Algorithm (NSGA-II). Such a Pareto set is one specific outcome of the optimization process, for a specific value of the parameters generation size, number of generations and mutation rate and for a specific outcome of the Monte Carlo simulation within NSGA-II. Similar issues exist for many other metaheuristics. However, when applied in practice, a policy maker desires a result that is robust for these unknown aspects of the method. In this paper Pareto sets from various runs of the NSGA-II algorithm are analyzed and compared. To compare the values of the decision variables in the Pareto sets, new methods are necessary, so these are defined and applied. The results show that the differences concerning decision variables are considerably larger than the differences concerning objectives. This indicates that the randomness of the algorithm may be a problem when determining the decisions to be made. Furthermore, it is concluded that variations caused by different parameters are comparable with the variations caused by randomness within the algorithm.
منابع مشابه
A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach
Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-r...
متن کاملSolving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm
This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...
متن کاملَA Multi-objective simulated annealing algorithm to solving flexible no-wait flowshop scheduling problems with transportation times
This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presen...
متن کاملMultimodal Transportation p-hub Location Routing Problem with Simultaneous Pick-ups and Deliveries
Centralizing and using proper transportation facilities cut down costs and traffic. Hub facilities concentrate on flows to cause economic advantage of scale and multimodal transportation helps use the advantage of another transporter. A distinctive feature of this paper is proposing a new mathematical formulation for a three-stage p-hub location routing problem with simultaneous pick-ups and de...
متن کاملSOLVING BEST PATH PROBLEM ON MULTIMODAL TRANSPORTATION NETWORKS WITH FUZZY COSTS
Numerous algorithms have been proposed to solve the shortest-pathproblem; many of them consider a single-mode network and crispcosts. Other attempts have addressed the problem of fuzzy costs ina single-mode network, the so-called fuzzy shortest-path problem(FSPP). The main contribution of the present work is to solve theoptimum path problem in a multimodal transportation network, inwhich the co...
متن کاملModelling and optimization of a tri-objective Transportation-Location-Routing Problem considering route reliability: using MOGWO, MOPSO, MOWCA and NSGA-II
In this research, a tri-objective mathematical model is proposed for the Transportation-Location-Routing problem. The model considers a three-echelon supply chain and aims to minimize total costs, maximize the minimum reliability of the traveled routes and establish a well-balanced set of routes. In order to solve the proposed model, four metaheuristic algorithms, including Multi-Objective Gre...
متن کامل